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Chemical Carcinogenesis in Feral Fish:
Uptake, Activation, and Detoxication of
Organic Xenobiotics
by Usha Varanasi,* John E. Stein,* Marc Nishimoto,*
William L. Reichert,* and Tracy K. Collier*

The high prevalence of liver neoplasms in English sole (Parophrys vetulus) and substantially lower
prevalence of neoplasms in a closely related species, starry flounder (Platichthys stellatus) captured from
industrialized waterways, provide a unique opportunity to compare biochemical processes involved in
chemical carcinogenesis in feral fish species. Because levels of aromatic hydrocarbons (AHs) in urban
sediments are correlated with prevalences of liver neoplasms in English sole, we have initiated detailed
studies to evaluate the effects of endogenous and exogenous factors on uptake, activation and detoxication
of carcinogenic AHs, such as benzo[a]pyrene (BaP), using spectroscopic, chromatographic, and radio-
metric techniques. The results obtained thus far show that sole readily takes up AHs associated with
sediment from urban areas and that the presence of other xenobiotics, such as PCBs, in sediment increases
tissue concentrations of BaP metabolites. Extensive metabolism ofBaP occurred whether sole was exposed
to this AH via sediment, per os, or intraperitoneally. Substantial modification of hepatic DNA occurred
and persisted for a period of 2-4 weeks after a single exposure to BaP. The level of covalent binding of
BaP intermediates to hepatic DNA was 10-fold higher in juvenile than adult sole and 90-fold higher in
juvenile sole than in Sprague-Dawley rat, a species which is resistant to BaP-induced hepatocarcinogenesis.
The level of chemical modification of hepatic DNA in juvenile flounder was 2-4 fold lower than that for
juvenile sole and concentration of BaP 7,8-diol glucuronide in bile of sole was significantly higher than
that in flounder bile, although the rate of formation of BaP 7,8-diol by hepatic microsomes was comparable
for both species. Moreover, liver microsomes from both species, in the presence of exogenous DNA,
metabolized BaP into essentially a single adduct, identified as (+ )anti-7,8-diol-9,10-epoxy-7,8,9,10-
tetrahydroBaP-dG. These results, along with our findings that hepatic GST activity in flounder was two
times higher than in sole, demonstrate that microsomal metabolism of BaP does not accurately reflect
the differences in the ability of these fish to form BaP-DNA adducts in vivo and also suggest that detox-
ication of reactive intermediates is an important factor in determining the levels of DNA modification by
AHs and resulting toxic effects in feral fish.

Introduction
Certain fish species (e.g., rainbow trout and medaka),

bred and reared in the laboratory, have been well es-
tablished as sensitive models to evaluate the effects of
exogenous and endogenous factors on chemical carcin-
ogenesis (1, 2). In contrast, at present virtually no in-
formation is available on the suitability of feral fish spe-
cies in studies of chemically induced carcinogenesis.
Development of feral fish species as models poses a num-
ber of problems, including maintaining these fish in the
laboratory over long periods, obtaining sufficient quan-
ities of fish of the required age and sex from relatively
uncontaminated areas, and working with genetically di-
verse populations. Additionally, very little is known
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about the nutritional requirements for these fish and
about culturing them in the laboratory so that the fish
are available throughout their entire life cycle. Never-
theless, most of these problems can be minimized or
overcome by careful planning and conduct of experi-
ments. The advantages of using feral fish species to
study processes involved in chemical carcinogenesis far
outweigh the above-mentioned difficulties because of
the availability of valuable epizootological information
on the same species with regard to the prevalence of
cancer in chemically contaminated environments. For
example, in Puget Sound, WA, data have been obtained
over the last five years on the prevalence of diseases,
including liver neoplasia, in several benthic fish species
and on the degree of xenobiotic contamination in the
sediments where the fish are found (3-5). The results
show a strong positive correlation between the concen-
trations of aromatic hydrocarbons (AHs) in sediment
and the prevalence of liver neoplasms in a benthic fish,
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the English sole (Parophrys vetulus). Moreover, a pos-
itive correlation has been demonstrated between levels
of aromatic compounds fluorescing at wavelengths ap-
propriate for benzo[a]pyrene (BaP) in bile and the prev-
alences of liver neoplasms in English sole sampled from
contaminated estuaries (6,7). As described elsewhere
in this volume (8), polychlorinated biphenyls (PCBs) and
other chlorinated hydrocarbons, such as hexachloro-
benzene and hexachlorobutadiene, are also detected in
urban sediments where English sole exhibits high prev-
alences of liver lesions; however, the concentrations of
these xenobiotics were not strongly correlated with the
prevalences of liver lesions (see Table 1 for represent-
ative data from the above studies).
A major focus of our research effort has been the

development of English sole as a laboratory model for
studying the biochemical basis of chemical carcinogen-
esis in fish, with an emphasis on understanding the pro-
cesses involved in the activation and detoxication of
carcinogenic AHs. In addition, we are interested in eval-
uating factors which may affect the initiation of chemical
carcinogenesis in benthic fish. Thus, we are currently
evaluating the uptake and metabolism of sediment-as-
sociated pollutants (e.g., PCBs and AHs) by benthic
fish, the effects of exogenous and endogenous factors
on uptake, activation, and detoxication of AHs, and dif-
ferences in the metabolism of AHs between closely re-
lated species of benthic flatfish (e.g., English sole and
starry flounder [Platichthys stellatus]). The results
from these types of studies should be useful in the plan-
ning of tumorigenesis studies, where the great expense,
both in terms of time and money, requires that only
those studies be done which have the best chance of
yielding useful information.

Uptake and Disposition of
Sediment-Associated AHs and
PCBs in English Sole
Information on bioavailability of sediment-associated

pollutants to benthic fish is essential in our attempts to
delineate cause and effect relationships between chem-
icals in the marine environment and observed biological
abnormalities. In recent years, considerable indirect
evidence has been obtained from field studies which
suggests that sediment is a major source of contami-
nants accumulated by benthic fishes (9-11). However,
factors such as fish migration (12) and heterogeneity of
sediment contamination (3,4) often make it difficult to
directly correlate the accumulation of chemicals in or-
ganisms to the presence of chemicals in the environment
where they are caught.

Accordingly, we conducted several laboratory studies
in which English sole was exposed to: (a) sediment from
a reference (relatively uncontaminated) area to which
'4C-naphthalene (NPH) and 3H-BaP (dissolved in 1%
Prudhoe bay crude oil) were added (13); (b) sediment
from a reference area to which environmentally realistic

Table 1. Concentrations of selected organic xenobiotics in
sediment and in bile of English sole and prevalences of hepatic

neoplasms in English sole from Puget Sound, WA.'

Xenobiotics in sediment, % of fish
ng/g dry weight sediment Bile having

4- and 5- fluorescence hepatic
Site PCBs ring AHsb responsec neoplasms
Eagle Harbor < 2.3 93,000 2,100 26.7
Duwamish 330 980 1,400 20.7
Waterway

Inner Everett 29 1,600 520 5.0
Harbor

President < 2.3 350 100 0
Point

Useless Bay < 2.3 41 67 0
aData adapted from the literature (3,4,7).
b Sum of concentrations in sediment of fluoranthene, pyrene, and

benzo(a)pyrene. Metabolites of these compounds fluoresce at the BaP
wavelength pair (7).

c Fluorescence response was measured at the BaP wavelength pair
(380/430 nm) and converted to ng BaP equivalents/g wet weight bile
(7).

levels of BaP or PCBs were added (14); and (c) sedi-
ments from the Duwamish Waterway, Puget Sound,
WA-an urban estuary where English sole exhibits a
consistently high prevalence of hepatic neoplasms-and
from a reference area virtually free of chemical contam-
inants (15,16). In studies (b) and (c), the radiotracers
3H-BaP and 14C-PCBs (Aroclor 1254) were also added.
Results from all three studies showed that fish had
measurable levels of radioactivity in most tissues and
fluids, indicating that AHs and PCBs added to sediment
were indeed bioavailable. More importantly, however,
in study (c), bile of fish exposed to test sediment (con-
taining 16 ppm of two- to six-ring AHs and 1.2 ppm
PCBs, based on wet weight of sediment) and reference
sediment was analyzed by HPLC-fluorimetric tech-
niques to show that bile of sole exposed to Duwamish
Waterway sediment contained significantly higher con-
centrations of compounds that fluoresce at the wave-
length pairs specific for NPH (2- to 3-fold), phenan-
threne (6- to 10-fold) and BaP (10- to 27-fold) (Fig. 1)
than did bile of fish exposed to reference sediment (15).
Moreover, analyses by gas chromatography (GC)
showed that liver of the test fish contained significantly
higher (ca. 10-fold) concentrations of PCBs than the
reference fish. These results show conclusively that
English sole is able to take up AHs and PCBs present
in sediment from urban estuaries. Although the precise
route of uptake [i.e., direct uptake of particle-bound
contaminants or uptake of xenobiotics released into the
sediment-associated water (SAW)] could not be deter-
mined, it should be noted (15,16) that SAW did not
contain detectable levels of AHs (< 0.6 ppb) or PCBs
(< 1 ppb) as analyzed by GC or by measurement of
radioactivity by liquid scintillation spectrometry (3H-
BaP < 0.05 ppb). Recent work by Rubinstein et al. (17)
has also shown that when fish are allowed direct contact
with contaminated sediment, they show increased ac-
cumulation of xenobiotics compared to fish which are
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Duwamish sediment

which ingest particles containing xenobiotics implicate
sediment as a major source of contaminants for English
sole and presumably other benthic fishes.
The results of study (a) show that from 24 to 168 hr,

the liver concentration of NPH-derived radioactivity
decreased, whereas BaP-derived radioactivity in-
creased in fish exposed simultaneously to these com-
pounds via sediment (Fig. 2) (13). Moreover, the pro-
portion of unmetabolized NPH in the liver dropped
substantially during this time. The Km value for NPH
(300 ,uM) is considerably higher than that for BaP (2.1
,uM) for fish liver microsomes (18), indicating that NPH
is a relatively poor substrate for hepatic monooxygen-
ases. Thus, the decrease in tissue concentrations of
NPH-derived radioactivity was most probably due to
facile excretion of the parent compound via skin and
gills (19,20). PCBs are also metabolized to a lesser ex-
tent than BaP by most organisms; however, in contrast
to NPH, PCBs continued to accumulate in tissues of
sole exposed to these xenobiotics in studies (b) and (c)
(14,15). These results indicate that, unlike NPH, PCB

Dosewallips sediment
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FIGURE 1. HPLC/fluorescence analyses of English sole bile for ar-
omatic compounds fluorescing at BaP wavelengths (380/430 nm).
BaP metabolites elute between 6 and 16 min. (A) Bile from fish
exposed to Duwamish River sediment (contaminated) for 28 days.
(B) Bile from fish exposed to Dosewallips sediment (reference) for
28 days. Contaminated sediment contained selected AHs at a total
concentration of 16 ,ug/g wet weight and PCBs at 1.2 ,ug/g wet
wt, plus added trace levels of 'H-BaP and 14C-PCBs; the respec-
tive concentrations in the reference sediment were 0.015 pg/g ug!
g wet weight and < 0.001 ,ug/g wet weight. Trace levels of 'H-
BaP were also added to the reference sediment. Adapted from
Varanasi et al. (16).

prevented from direct contact. Hence, direct desorption
of the xenobiotics from the particles to gut, gill and skin
mucosa may constitute a significant route of uptake.
Moreover, we have noted that the stomach contents of
English sole examined immediately after capture com-
prised substantial amounts of sediment, along with var-
ious invertebrates which also contained sediment in
their digestive tracts. In addition, substantial amounts
of organic xenobiotics have been reported to be present
in the gut contents of English sole from contaminated
areas (4,5). Thus, both the direct uptake of particle-
bound xenobiotics or indirect uptake via food organisms
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FIGURE 2. Uptake of sediment-associated NPH and BaP in liver
of English sole; values include parent AHs and metabolites. 'H-
BaP, "C-NPH, and Prudhoe Bay crude oil were added to a ref-
erence sediment such that the final concentrations were 370 and
450 ng/g dry weight and 0.02 g/g dry weight, respectively.
Adapted from Varanasi et al. (13).
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congeners may not be easily excreted from fish prior to
metabolism and thus will accumulate in all tissues. This
conjecture is supported by the results depicted in Fig-
ure 3 showing that while BaP-derived radioactivity was
primarily (ca. 65%) in the hepatobiliary system-a ma-
jor site for xenobiotic metabolism and excretion-PCB-
derived radioactivity was more evenly distributed
within the tissues of fish (only 21% in the hepatobiliary
system) exposed to both 3H-BaP and 14C-PCB in sedi-
ment (14). Thus, through the use of various analytical
techniques (GC, HPLC-fluorimetry) we were able to
show clearly that AHs and PCBs, either added to sed-
iments or deposited in urban sediments by natural pro-
cesses, were bioavailable to English sole. Further,
through the use of radiolabeled compounds, we were
able to show differences in both the accumulation and
disposition of AHs and PCBs (13-16).
The results of studies (b) and (c) also reveal differ-

ences in the accumulation of BaP by English sole in the
presence and absence of other xenobiotics (14,15). For
example, concentrations of BaP-derived radioactivity in
fish exposed to Duwamish River sediment with added
3H-BaP [study (c)] or reference sediment containing
both 3H-BaP and 14C-PCBs [study (b)] were signifi-
cantly higher than the corresponding values for fish ex-
posed to reference sediment containing 3H-BaP alone
(Fig. 4). These increased body burdens of BaP-derived
radioactivity were due primarily to the increased con-
centrations in liver and bile. Further analysis (Table 2)
by solvent extractions and enzymatic hydrolysis showed
that the BaP-derived radioactivity in bile was present
as glucuronide and sulfate conjugates, based on hy-
drolysis of these conjugates by appropriate enzymes

(21,22), and as glutathione (GSH) conjugates, based on
our earlier studies showing that metabolites remaining
in the aqueous phase after enzymatic hydrolysis coch-
romatographed with BaP-GSH conjugates on aluminum
oxide columns and thin-layer chromatography plates
and were ninhydrin positive (23).
The increased accumulation of BaP metabolites in bile

and liver of sole exposed to BaP in the presence of other
xenobiotics may result from induction of hepatic xeno-
biotic metabolizing enzymes (HXMEs) such as the
mixed-function oxidases (MFOs) and conjugation en-
zymes [e.g., UDP-glucuronosyl transferase (UDPGT)
and glutathione-S-transferase (GST)]. In rodents, ex-
posure to PCBs results in induction of both MFO and
conjugation enzymes (24). In fish, hepatic MFO activi-
ties are rapidly induced by xenobiotics, such as AHs
and PCBs (25-28), known to be present in urban sed-
iments, whereas activities of conjugating enzymes are
induced much more slowly and to a lesser extent. For
example, Andersson et al. (29) showed that exposure
of rainbow trout to 3-naphthoflavone and Clophen A50
markedly induced (170- and 50-fold, respectively) he-
patic MFO activity in 4 to 7 days, but that both GST
and UDPGT were much less induced (1- to 3-fold), and
maximal induction was not reached until 2 to 3 weeks
after exposure. Further, it has been shown that expo-
sure of salmonids to known inducers of hepatic MFO
activity followed by exposure to 2-methylnaphthalene
or 2,6-dimethylnaphthalene resulted in higher concen-
trations of parent AHs and metabolites in bile than the
corresponding levels found in control fish (30,31). We
have also shown that exposure ofboth juvenile and adult
English sole to injections of an organic-solvent extract
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Adapted from Stein et al. (14).
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FIGURE 4. Tissue to sediment concentration ratios (TSRs) of BaP-
derived radioactivity in English sole exposed to (A) reference sed-
iment with added 3H-BaP or 3H-BaP and 14C-PCBs (TSRs are for
whole body); (B) Duwamish River (contaminated) and Dosewallips
(reference) sediments containing trace levels of3H-BaP (TSRs are
for the liver). See Figs. 1 and 3 and (14,15) for further details.

of Duwamish River sediment can substantially induce
hepatic MFO activity, measured as aryl hydrocarbon
(BaP) hydroxylase (AHH), within several days (32,33).
Thus, if induction of HXMEs occurred in English sole

exposed to Duwamish River sediment [study (c)], then
the higher concentrations of BaP-derived radioactivity
in liver and especially bile may be due to increased
metabolism and turnover (uptake and secretion) of BaP.
However, factors such as increased hepatic uptake of
BaP as well as decreased excretion of BaP and its me-
tabolites may also contribute to the greater accumula-
tion of BaP-derived radioactivity seen in the liver and
bile of sole exposed to sediment-associated BaP in the
presence of other xenobiotics [studies (b) and (c)]. More-
over, in study (c), even though test and reference sed-
iments had similar physiochemical properties, the pos-
sibility of higher bioavailability of BaP from the test
sediment cannot be excluded.
The data from study (c) (Table 2) reveal that there

was a selective retention of metabolites bound to GSH
and macromolecules in liver, whereas glucuronide/sul-
fate conjugates appeared to be rapidly released into bile.
These results are in agreement with those of Plummer
et al. (34) showing the GSH conjugates of BaP 4,5-oxide
were retained in rodent liver, whereas the BaP 4,5-diol
glucuronide was more readily released into bile. Table
2 also shows that the ratios of GSH conjugates to glu-
curonide conjugates of 3H-BaP in liver and bile of fish
chronically exposed to 3H-BaP in Duwamish River sed-
iment averaged 42 and 3.1, respectively whereas the
corresponding values for fish exposed to H-BaP in the
reference sediment were 15 and 1.9, respectively. These
results showing that a higher proportion of BaP was
converted to GSH conjugates in sole exposed simulta-
neously to other xenobiotics in Duwamish River sedi-
ment are suggestive of alterations in BaP metabolism
by fish chronically exposed to contaminated sediments.
Further, this shift to greater formation of GSH conju-
gates in fish exposed to Duwamish River sediment is
consistent with the higher liver tissue to sediment con-

centration ratios (TSRs) for BaP-derived radioactivity
in these fish compared to fish exposed to a reference
sediment. These alterations in the ability of English sole

Table 2. Distribution of BaP- and PCB-derived radioactivities in liver and bile of English sole exposed to Duwamish River (test) and
Dosewallips (reference) sediments having added 3H-BaP and "4C-PCBs, and 3H-BaP, respectively.'

% of total radioactivity8
3H-BaP '4C-PCBs, test sole

Exposure, Test sole Reference sole
Metabolic compartment days Liver Bile Liver Bile Liver Bile
Parent compounds 56 1.0 ± 0.1 < 1 2.9 ± 0.3 < 1 92 ± 3 60 ± 4

108 1.1 ± 0.3 < 1 1.3± 0.3 < 1 95 ± 1 64 ± 2

Unconjugated metabolites 56 3.9 ± 0.8 3 ± 1 7.1 ± 0.6 1 ± 1 3.5 ± 0.5 < 4
108 3.2 ± 0.5 4± 1 7.0± 1.2 2± 2 2.4 ± 0.3 < 4

Glucuronides and sulfates 56 1.7 ± 0.2 25 ± 2 5.6 ± 0.3 33 ± 2 0.6 ± 0.3 30 ± 4
108 1.9 ± 0.4 22 ± 1 4.1± 0.4 34 ± 2 0.3 ± 0.1 27 ± 1

Glutathione-derived conjugates 56 70 ± 2 72 ± 2 70 ± 2 66 ± 1 3 ± 2 10 ± 2
108 80 ± 2 74 ± 1 70 ± 2 64 ± 3 1.4 ± 0.2 9 ± 1

Metabolites bound to 56 20 ± 2 16 ± 1 0.7 ± 0.2
macromolecules 108 20 ± 2 16 ± 1 0.5 ± 0.2
a Adapted from Stein et al. (15).
bX ± SEM (n = 3 for liver values and 4-8 for bile values).
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to metabolize carcinogenic AHs are intriguing in view
of the findings from the field studies showing that the
interaction between levels of PCBs and AHs in sedi-
ments may negatively correlate with the prevalences of
hepatic neoplasms in English sole from Puget Sound (D.
C. Malins, personal communication). It should also be
noted that simultaneous exposure to PCBs and AHs in
rodents inhibits AH-induced carcinogenesis (35) and
that simultaneous exposure of rainbow trout to PCBs
and aflatoxin B1 (AFB1) results in a reduced incidence
of liver cancer in these fish (36). However, it is also
reported that the time of the exposure to PCBs (i.e.,
pre- or post-initiation phase) as well as numerous en-
dogeneous (e.g., age, sex, nutritional status) and exo-
geneous (e.g., promoting agents, water temperature,
etc.) factors may modulate the effect of xenobiotics,
such as PCBs, on chemically induced carcinogenesis (2).

In addition to showing that the ability of fish to pro-
cess carcinogens may be altered due to concomitant ex-
posure to other xenobiotics, the studies described above
also provided valuable information on differences in
metabolic activation between BaP and PCBs (14,15).
The data in Figure 5 show that in English sole exposed
for 108 days to 3H-BaP and 14C-PCBs added to Du-
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wamish River sediment, the level of BaP metabolites
bound covalently to hepatic macromolecules was 5 times
greater than the value for PCB metabolites, although
the total concentration of PCB-derived radioactivity in
the liver was 5-fold higher than BaP-derived radioac-
tivity. The results (Table 2) also show that a substan-
tially greater proportion of BaP than PCBs was con-
verted by sole liver to reactive electrophilic metabolites
which can serve as substrates for GSH conjugation. This
finding suggests different mechanisms of metabolism
between BaP and PCBs by English sole. A recent study
(37) with phenobarbital-induced rat liver microsomes
suggested that 2,2',5,5'-tetrachlorobiphenyl, a major
component of Aroclor 1254, was predominantly (> 90%)
metabolized by a nonarene oxide pathway. In contrast,
BaP is primarily metabolized via arene oxide pathways
(38). Metabolism by a non-arene oxide pathway may
result in less conjugation with GSH and less binding to
hepatic macromolecules because a non-arene oxide
mechanism may lead to an intermediate that is less re-
active towards either GSH or cellular macromolecules.
As discussed above, GSH-derived BaP conjugates were
apparently retained in liver relative to BaP glucuron-
ides and sulfates; thus, the low proportion of PCB me-
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FIGURE 5. Concentrations in liver and levels of covalent binding to hepatic proteins of BaP- and PCB-derived radioactivities in English sole
exposed to Duwamish River sediment for 108 days (see Fig. 1 for further details). Adapted from Stein et al. (15).
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tabolites in liver (< 8% of total PCB-derived radioac-
tivity) of sole exposed to sediment-associated PCBs may
be due to both a low rate of phase I metabolism and
rapid conjugation of hydroxylated PCB metabolites to
form glucuronides or sulfates and subsequent secretion
of these compounds into bile (14,15). While considering
this information, however, it must be remembered that
we have used a mixture of PCB congeners (Aroclor
1254) in these studies, and thus the possibility that spe-
cific PCB congeners may be efficiently activated to re-
active electrophilic metabolites cannot be excluded.
The results described above serve as initial studies

to draw attention to differences in the mechanisms of
metabolism of different classes of organic pollutants.
Concomitantly, we have studied the metabolic activa-
tion of carbazole (CBZ), a nitrogen-containing aromatic
compound that has been detected in sediment from a
highly polluted estuary in Puget Sound (39). CBZ is
implicated in one study as a hepatocarcinogen in mice
(40), and electron spin resonance spectroscopy of the
hepatic microsomal fractions isolated from English sole
with liver lesions indicated the presence of CBZ inter-
mediates associated with these fractions (41). Our pre-
liminary results show that 24 hr after juvenile English
sole was given intraperitoneal (IP) injections containing
equimolar concentrations of either 3H-BaP or 14C-CBZ
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FIGURE 6. Covalent binding indices of benzo[a]pyrene metabolites
to hepatic DNA of juvenile and adult English sole exposed PO to
0.1 mg 3H-BaP/kg body weight. Fish were sacrificed 24 hr later
and hepatic DNA was isolated by previously described methods
(46). The covalent binding index (CBI) = (pLmole BaP-equivalents/
mole nucleotide)/(mmole BaP administered/kg body weight).
Adapted from Varanasi et al. (23,46,47).

dissolved in acetone, no detectable level of covalent
binding of 14C-CBZ intermediates to hepatic DNA was
observed, whereas the binding of BaP intermediates to
hepatic DNA was an order of magnitude higher than
that observed for rat liver DNA (see discussion below
for more details). Moreover, covalent binding of 14C-
CBZ to hepatic proteins was about 20-fold lower than
the value for 3H-BaP. Thus, these results again em-
phasize differences in the metabolic activation of dif-
ferent classes of organic xenobiotics by English sole.

Metabolic Activation of BaP
The findings described above definitively show that

BaP, a carcinogenic AH present in sediment from in-
dustrialized waterways, is taken up by English sole and
converted to metabolites that bind to hepatic macro-
molecules. As many xenobiotics exert their carcinogenic
effects only after metabolic activation, we are conduct-
ing detailed studies on the activation and detoxication
of BaP, used as a model carcinogenic AH, in various
fish species. Debate continues, however, about the va-
lidity of using biochemical parameters, such as covalent
binding of a carcinogen to DNA or metabolite profiles
of a procarcinogen, to measure quantitatively the car-
cinogenic potency of a compound or susceptibility of a
tissue or species. Nevertheless, it is generally agreed
that information from such studies, if used prudently,
can be useful in our attempts to understand why certain
fish species are susceptible to chemically induced car-
cinogenesis.

Field studies have shown that the prevalence of he-
patic neoplasms increases with age for English sole cap-
tured from the same area (42,43). However, our ex-
periments conducted in the summer show that the level
of covalent binding of BaP intermediates to hepatic
DNA in juvenile sole is an order of magnitude higher
than that obtained for nonspawning adult female sole
exposed to equivalent doses of BaP (Fig. 6). It should
also be noted that rainbow trout embryos exposed only
once to very low levels of BaP develop hepatic tumors
within 10 months (44), whereas adults must be exposed
to chronic high levels of BaP to achieve a similar effect
(45). Thus, it seems possible that the field data described
above reflect the length of time for initiation to be man-
ifested as discernible tumors, rather than any enhanced
senstivity of older fish to chemically induced carcino-
genesis.
The data in Figure 6 also show that the binding values

for nonspawning adult female sole and spawning adult
male sole were higher than the values for the spawning
adult females (23,46,47). Concomitant with this, our
data (33) have shown that AHH activity towards BaP
is very low in hepatic microsomes from spawning female
English sole (10 pmole BaP metabolized/mg protein/
min). Lowered levels of AHH activity in hepatic mi-
crosomes of gonadally mature female fish are generally
shown to occur, and to be due to decreases in the levels
of microsomal cytochrome P-450 (48). It should also be
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FIGURE 7. Persistence of BaP-DNA adducts in liver of juvenile English sole exposed to 3H-BaP via IP injection [(2 mg BaP, dissolved in
acetone)/kg body weight] or P0 [(0.1 mg BaP, dissolved in corn oil)/kg body weight]. Hepatic DNA was isolated as previously described
(46,51), and radioactivity was determined by using liquid scintillation spectrometry. Data for the P0 study were adapted from Varanasi et
al. (46).

noted that English sole spawn in winter and that it
appears that both gonadal steroids (e.g., estradiol-171)
and water temperature play important roles in the mod-
ulation of the levels of cytochrome P-450 in fish (49).
Thus, more detailed studies are needed to evaluate sex-
related differences in metabolic activation of BaP by
adult sole. Accordingly, because our results with ju-
venile sole show no significant sex-related differences
in the level of covalent binding to hepatic DNA, and
also because of the greater activation of BaP by juvenile
sole into intermediates that bind to hepatic DNA, we
have used juvenile sole as our model to conduct more
detailed studies on the in vitro and in vivo metabolism
of BaP by English sole and to compare these results
with other juvenile fish and rodent species.
We conducted a number of studies (13-15,21,46,50-

54) in which juvenile English sole were used to study
the biochemical fate of radiolabeled BaP, both in vivo
and in vitro. Experimental details are given with the
figures and tables. In these studies, we found that the
levels of chemical modification of hepatic DNA in sole
(Fig. 7) reaches a maximum value between 8 and 48 hr
after administration of BaP IP or PO and persists for

a period of 2 to 4 weeks (46). Higher levels of BaP
intermediates are bound covalently to hepatic DNA in
sole given IP injections of BaP dissolved in acetone as
compared to corn oil at 24 hr (Table 3) (51). The level
of binding of BaP intermediates to hepatic protein (data
not shown) and hepatic DNA (Table 3) was 20- to 40-
fold higher in fish exposed to 2 mg BaP/kg body weight
than in those exposed to 0.1 mg BaP/kg body weight
(46,51), indicating a dose-dependent increase in the level
of modification of hepatic macromolecules by BaP. Re-
gardless of dose or route of exposure, reverse- and nor-
mal-phase HPLC of phase I metabolites released after
treatment of bile from BaP-exposed fish with ,3-glucu-
ronidase and arylsulfatase show that BaP 7,8-diol and
1- and 3-hydroxy BaP were the major identifiable me-
tabolites (Fig. 8) (Table 4). Sole liver microsomes in the
presence of exogenous DNA metabolized BaP into es-
sentially a single adduct, identified as (+ )anti-7,8-diol-
9, 10-epoxy-7,8,9, 10-tetrahydroBaP (anti-BPDE)-dG by
reverse-phase HPLC and boronate column chromatog-
raphy (Fig. 9) (52,53). For hepatic microsomes of sole
from two sites in Puget Sound, there was a direct re-
lationship between AHH activity and the amount of
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Table 3. Covalent modification of hepatic DNA by metabolites of benzo(a)pyrene (BaP) in several fish and rodent species.

BaP, fmole
Dose, mg BaP/ Route of equivalents/ % admin. dose

Speciesa kg body weight Vehicle exposure mg DNA in liver CBIb Reference
California killifish 0.6 Corn oil IP 8.9 NA 1.2 (62)
Speckled sanddab 0.6 Corn oil IP 14 NA 1.8 (62)

English sole 0.1 Corn oil PO 51 0.8 45 (46)
2.0 Corn oil PO 2100 2.1 85 (51)
2.0 Corn oil IP 250 (880)C 0.78 (1.59)c 9.8 (31)C (50)
2.0 Acetone IP 27,000 6.0 1050 (51)

Starry flounder 2.0 Corn oil PO 540 0.5 21
2.0 Acetone IP 14,000 3.5 540

Rat (Sprague-Dawley) 2.0 Acetone IP 300 1 13 (51)

Mouse (C57B1/6J) 0.6 Corn oil IP 72 NA 9.3 (62)
a All values are for both sexes combined, except for rat and mouse, where only females and only males were used, respectively; animals
were killed 24 hr after exposure.
bCovalent binding index (CBI) =

Aimole BaP equivalents/mole nucleotides
mmole BaP administered/kg body weight

'Values in parentheses are for 48 hr after exposure-note that all show increases over 24-hr values.

protein that cross-reacted with the rabbit antibody to
a trout cytochrome P-448 type isozyme, LM4b (Fig. 10)
(54).

Comparative Metabolism of
Benzo[a]pyrene and Covalent
Binding to Hepatic DNA in Fish and
Rodent Species
Feral fish species exhibit a range of susceptibility to

hepatocarcinogenesis in chemically polluted estuaries.
For example, of the pleuronectid fish studied, English
sole and rock sole exhibit high prevalences of liver neo-
plasms when sampled from chemically polluted estu-
aries in Puget Sound, WA, whereas starry flounder ex-
hibits a very low prevalence of liver neoplasms (3,55).
In other field studies, winter flounder in Boston Harbor,
MA, (56) and brown bullhead in Niagara River, NY (57),
show a high prevalence of liver neoplasms. Moreover,
laboratory studies with salmonid fish (2) have demon-
strated that the Mount Shasta strain of rainbow trout
is susceptible to both BaP- and AFB1-induced carcino-
genesis, whereas coho salmon is relatively resistant to
these carcinogens. Another interesting species-specific
difference is noted when comparing target tissues for
AH-induced carcinogenesis in fish species and rodents.
For example, AHs such as DMBA and BaP cause liver
cancer in Poeciliopsis and rainbow trout, respectively
(44,45,58), whereas these AHs tend to cause cancer in
extrahepatic tissues (e.g., skin, mammary gland, and
lung) in adult rodents (59-61). Numerous studies (51-
53,62-65) on hepatic microsomal metabolism of AHs,
such as BaP, by fish and rodent species show several
quantitative differences (Table 5). Generally, rodent
liver microsomes metabolize BaP at a substantially
higher rate than fish liver microsomes. However, only
a small proportion (< 10%) of BaP is metabolized to BaP
7,8-diol by rat and mouse liver microsomes, compared

to a value of 20 to 30% for several fish species. The in
vitro metabolite profiles obtained with AH-induced fish
are similar to those for untreated fish (Table 5). When
hepatic microsomes from rat are incubated with BaP in
the presence ofDNA, a major adduct formed is the BaP-
9-hydroxy-4,5-oxide-dG (65), whereas for English sole
(52,53) the major adduct is anti-BPDE-dG (Fig. 11).
These differences in the metabolism of BaP by rat and
fish liver enzymes are consonant with the findings in
vivo, showing that BaP 4,5-diol is the major diol formed
in rat liver (66), whereas BaP 7,8-diol was the major
diol released after enzymatic hydrolysis of aqueous sol-
uble metabolites in bile of English sole (21). Another
consistent difference in microsomal metabolism of BaP
between fish and rodent species is that lower propor-
tions of quinones are formed by fish liver microsomes
(Table 5). In one study (51) when English sole, starry
flounder, and Sprague-Dawley rat were given IP injec-
tions containing equimolar concentrations of 3H-BaP
dissolved in acetone, the level of BaP intermediates
bound to hepatic DNA in both fish species at 24 hr after
BaP exposure was 50 to 90 times greater than that for
rat (Table 3). Thus, the result that in rat liver relatively
small proportions of BaP were converted into BaP 7,8-
diol, the precursor of reactive intermediates such as
anti-BPDE, helps explain the very low level of binding
of BaP intermediates to rat liver DNA compared to sole
or flounder liver DNA. In addition, differences in rates
of excision-repair of BaP-modified DNA may also con-
tribute significantly to the observed differences in bind-
ing levels between rat and fish species. Our results
showed that high levels of modification of hepatic DNA
in juvenile English sole persisted for up to 4 weeks after
administration of BaP (Fig. 7), which supports findings
that fish cells have a very low rate of excision-repair
compared to rodent cells (67).

Interestingly, recent work by von Hofe and Puffer
(62) shows that when California killifish (Fundulus par-
vipinnis), speckled sanddab (Citharicthys stigmaeous),
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FIGURE 8. HPLC profiles of BaP metabolites released after P-glucuronidase and arylsulfatase treatment of bile of English sole and starry
flounder exposed to 2 mg 3H-BaP/kg body weight for 24 hr. The fractions from 12-23 min were isolated from a second reverse-phase HPLC
and an aliquot was analyzed further by normal-phase HPLC (51). DPM = disintegrations per minute.

Table 4. Reverse-phase HPLC analyses of metabolites of benzo(a)pyrene released after enzymatic hydrolysis of bile of English sole
and starry flounder.a

% total radioactivity in the organic phaseb
Species Route 9,10-Diol 4,5-Diol 7,8-Diol Quinones 9-OH 1-OH 3-OH
Experiment 1

English sole, (n = 9) PO 3.6 ± 0.4 trc 12 ± 1* 7.8 ± 0.8 1.5 ± 0.2* 7.2 ± 0.6 29 ± 1
Starry flounder, (n = 7) PO 3.7 ± 0.5 tr 8.1 ± 0.6 11 ± 2 2.2 ± 0.2 5.7 ± 0.8 24 ± 2

Experiment 2
English sole, (n = 7) IP 4.2 ± 0.9 tr 14 ± 1* 14 ± 1 1.8 ± 0.2 7 ± 1 14 ± 1*
Starry flounder, (n = 9) IP 2.7 ± 0.4 tr 11 ± 1 11 ± 1 1.9 ± 0.2 10 ± 1 23 ± 2
aAdapted from Varanasi et al. (51); fish were exposed to 2 mg 3H-BaP/kg body weight and sampled after 24 hr.
bValues are expressed as X + SEM.
Ctr = trace (< 1%).
*Significantly different (p < 0.05) from corresponding values for starry flounder as analyzed by Student's t-test.
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column. Figure 9B represents HPLC analysis of DNA adduct standards formed by the reaction of anti-BPDE with DNA. The arrows in
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and mice were given IP injections containing equimolar
concentrations of BaP dissolved in corn oil, the level of
binding of BaP intermediates to hepatic DNA in both
fish species, at 24 hr after BaP exposure, was five to
eight times lower than the binding for mouse (Table 3).
Evaluation ofHPLC profiles of phase I metabolites pro-
duced by the fish liver microsomes (Table 5) showed
that in both fish species BaP 7,8-diol was a major me-
tabolite, whereas mice are known to produce high pro-

portions of BaP 4,5-diol (64). Thus, it is obvious from
the two studies (51,62) described here that differences
in metabolic activation as discerned from microsomal
metabolism of BaP by fish and rodent species alone can-
not adequately explain the differences in level of cov-
alent binding of BaP to hepatic DNA in vivo. This is
not too surprising, because in vivo both activation and
detoxication systems will be operating in concert. For
example, comparison of phase I metabolites produced
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metabolites (51,62,63). However, the range of the co-
* valent binding indices (CBIs) for BaP-modified hepatic

DNA in four of these fish species was quite large (Table
3), indicating that other factors, such as different sol-
vent vehicles used (corn oil versus acetone), differential

r= 0.96, p < 0.001 detoxication of reactive intermediates, and excision-re-
pair of BaP-DNA adducts may play important roles in
ultimately determining the level of DNA modification.

* Because of the different solvent vehicles used and dif-
ferent water temperatures (20°C with sanddab and kil-
lifish versus 12°C for sole and flounder), detailed com-
parisons of the data in Tables 3 and 5 are not possible.
General observations are that the CBI for hepatic DNA
in mouse and rat in these studies (Table 3) were com-
parable (9 versus 13) with each other and with values
reported in literature (61). However, use of corn oil as
a vehicle in the experiment (62) with fish at 20°C and
mouse at 37°C may have resulted in much slower ab-

' ' ' sorption of the administered dose by fish at 24 hr. In
5 10 15 20 25 30 support of this possibility, we find that when BaP was

dissolved in corn oil and administered IP to English sole,
pmol RTLM4b equivalents/mg protein the CBI for hepatic DNA at 24 hr was 100 times lower

than the value obtained for fish given IP injections con-

tion between levels of AHH activity in hepatic taining equimolar concentrations of BaP dissolved in
iglish sole and levels of a cytochrome P-450 iso- acetone (Table 3). Moreover, the CBI for fish given BaP
with the rabbit IgG to rainbow trout LM4b, the in corn oil had increased 3-fold by 48 hr whereas that
P-450 isozyme induced by 3-naphthoflavone in for fish given BaP in acetone remained unchanged, sug-

lapted from Varanasi et al. (54). gesting that absorption from the peritoneal cavity of

BaP dissolved in corn oil was considerably slower.
Nevertheless, the data given in Table 3 show that Eng-

nes of five fish species shown in Table lish sole was able to activate BaP (dissolved in corn oil
sanddab, killifish, and southern floun- and administered IP) to a greater extent, as indicated
s lethostigma)] show striking similar- by higher CBI for hepatic DNA, than did sanddab or
,8-diol constituting 20 to 30% of total killifish, even though hepatic microsomes from all three

Table 5. Metabolism of benzo(a)pyrene by hepatic microsomes of fish and rodents.

% of total identifiable metabolitesd,e
Species Treatmenta AHHb 9,10-Diol 4,5-Diol 7,8-Diol Quinonesc 9-OH 1-OH 3-OH Reference
English sole U 190 17 1.1 26 7 2.3 21 26 (51)

I 550 20 1.3 26 6.7 1.0 18 26
Starry flounder U 180 24 3.3 22 7 5 19 20 (51)

I 630 26 4.1 27 9.6 0.8 9.8 22

California killifish U 120 19 ND 20 8 ND 52 (62)
I 400 24 ND 28 9 4 35

Speckled sanddab U 43 21 ND 26 ND ND 53 (62)
I 100 18 ND 28 6 ND 48

Southern flounder U 16 22 3.6 28 10 10 28 (63)
I 840 24 2.6 29 11 7 13

C57BL/6J mouse U 875 0.2 3 4 46 6 41 (77)
I 4560 1 2 9 31 14 37

Sprague-Dawley rat U 600 16 15 6.7 20 12 12 19 (51)
a U = uninduced, I = induced. Animals were exposed IP to BaP or 3-methylcholanthrene (3-MC) for induction of AHH as follows: English

sole, starry flounder, and rat (2 mg BaP/kg body weight, 24 hr before sacrifice); killifish and sanddab (20 mg 3-MC/kg body weight, 48 hr
before sacrifice); southern flounder (15-33 mg 3-MC/kg body weight 4 days before sacrifice); mouse (25 mg 3-MC/kg body weight, three daily
doses before sacrifice).

bAHH [aryl hydrocarbon (BaP) hydroxylase] values are expressed as pmole BaP metabolized/mg protein/min.
e Contains BaP 1,6-, 3,6-, and 6,12-quinones.
d ND = not detected.
e = not separated by HPLC from other phenolic metabolites.
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FIGURE 11. Tritiated BaP was incubated with hepatic microsomes
from either English sole (25°C) or Sprague-Dawley rat (37°C) in
the presence of salmon testes DNA, NADPH and Tris buffer (pH
7.5) for 30 min. DNA was isolated and hydrolyzed to deoxyribon-
ucleosides. BaP-deoxyribonucleoside adducts were isolated by
Sephadex LH-20 column chromatography and analyzed by HPLC
using a Beckman Ultrasphere ODS column. The bar (i e) indi-
cates where the 14C-( + )-anti-BPDE-dG adduct chromatographs.
Adapted from Nishimoto and Varanasi (52).

species produced remarkably similar profiles of phase I
metabolites (Table 5). Again, these results show that
microsomal metabolism of carcinogens need not quan-
titatively reflect the ability of fish to form carcinogen-
DNA adducts in vivo.

In order to evaluate further the role of detoxication
processes in the metabolism of carcinogenic AHs in
vivo, a detailed study (51) was conducted with English
sole and starry flounder, two closely related pleuronec-
tid fishes (68). As mentioned earlier, English sole appear
to be more susceptible to chemically induced cancer than
starry flounder, because it shows higher prevalences of
hepatic neoplasms than starry flounder, even when both
species are sampled from the same contaminated en-
vironment (55).
The results given in Tables 3 and 4 show that 24 hr

after administration of BaP (2 mg/kg body weight) to

fish either PO or IP, the level of binding of BaP me-
tabolites to hepatic DNA was two to four times higher
in sole than in flounder, and bile had significantly higher
proportions of BaP 7,8-diol-glucuronide than did bile
from flounder in both experiments. These findings along
with our results showing that both English sole (53) and
starry flounder (50) liver microsomes metabolize BaP
essentially to a single DNA adduct, namely the (+)-
anti-BPDE-dG, suggest that the higher binding of BaP
intermediates to hepatic DNA in sole may be mostly
due to more BPDE available in sole than in flounder.
Although binding of other reactive intermediates (e.g.,
free radicals, phenol epoxides) to DNA in vivo cannot
be excluded, no differences were observed in the pro-
portions of phenols or quinones released after enzymatic
hydrolyses of bile from the two species (Table 4).
Higher levels of BaP 7,8-diol glucuronide in the bile

of sole and higher DNA binding in sole liver can be
explained if a greater proportion of BaP was converted
into BaP 7,8-diol in sole liver. However, our results
show that both the rate of BaP metabolism and the
proportion of BaP 7,8-diol formed by sole liver micro-
somes were essentially the same as the corresponding
values for flounder (Table 5). It appears from studies
with mammals that the formation of BaP 7,8-oxide is
the rate-limiting step in the formation of BaP 7,8-diol
(69), which suggests that the rate of formation of BaP
7,8-oxide was comparable for both fish species, whether
they were untreated or BaP-induced (Table 5). The
higher concentrations ofBaP 7,8-diol glucuronide in sole
bile and the higher binding of BaP to sole liver DNA
can also be explained if, relative to sole, greater con-
jugation ofBaP 7,8-oxide with GSH occurred in flounder
liver. In support of this conjecture, we find that cyto-
solic GST activity in flounder liver (2500 + 750 nmole/
mg protein/min) is substantially higher than that in sole
liver (900 ± 140 nmole/mg protein/min), measured with
1-chloro-2,4-dinitrobenzene as the substrate (70). The
more effective conjugation of BaP 7,8-oxide with GSH
in flounder liver could result in less BaP 7,8-diol avail-
able for conjugation with glucuronic acid and subse-
quent release into bile, as well as less formation of
BPDE (Fig. 12). In addition, BPDE could be more ef-
fectively conjugated with GSH in flounder liver than in
sole liver, thereby further reducing the availability of
BPDE for binding to hepatic DNA in flounder. It should
be noted that both BaP 7,8-oxide and BPDE are shown
to be substrates for mammalian GST isozymes, with
BPDE being a better substrate than BaP 7,8-oxide (71).
Studies with mammalian systems show that both the
concentration of cellular GSH and the level of GST ac-
tivity are inversely related to DNA binding of BaP me-
tabolites (72- 75); however, there appears to be a better
correlation between GST activity and DNA modification
by BaP. Although the more effective detoxication of
epoxides by GSH in flounder than sole can explain the
present results, it should be emphasized that the effi-
ciency of GSH conjugation apparently depends on sub-
strate specificities of GST isozymes (74,75), and thus
cannot be predicted only from total GST activity. More-
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FIGURE 12. Activation and detoxication pathways for BaP.

over, no information is currently available on how ex-
posure to contaminants affects hepatic GST activity in
juvenile English sole or starry flounder. Further studies
are needed to characterize isozymes of hepatic GST in
uninduced and induced fish; to identify the adducts of
BaP intermediates with both GSH and hepatic DNA;
and to measure differences in the rates of excision-re-
pair of modified DNA in these two fish species. In ad-
dition, the possible role of other enzymatic reactions,
such as dihydrodiol dehydrogenase (76), in the metab-
olism of BaP 7,8-diol by these species needs to be in-
vestigated. Such studies should provide a clearer un-
derstanding of the present results showing a higher
level of chemical modification of hepatic DNA in BaP-
exposed sole than in flounder. Nevertheless, it is evi-
dent from these results that detoxication processes
must be taken into account when evaluating the relative
abilities of aquatic animals to activate carcinogens, and
their subsequent susceptibility to chemically induced
carcinogenesis.
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